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Transient and steady shapes of droplets attached
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By S. N. REZNIK, A. L. YARIN†, A. THERON
AND E. ZUSSMAN

Faculty of Mechanical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

(Received 2 January 2003 and in revised form 18 March 2004)

The shape evolution of small droplets attached to a conducting surface and subjected
to relatively strong electric fields is studied both experimentally and numerically.
The problem is motivated by the phenomena characteristic of the electrospinning
of nanofibres. Three different scenarios of droplet shape evolution are distinguished,
based on numerical solution of the Stokes equations for perfectly conducting droplets.
(i) In sufficiently weak (subcritical) electric fields the droplets are stretched by the
electric Maxwell stresses and acquire steady-state shapes where equilibrium is achieved
by means of the surface tension. (ii) In stronger (supercritical) electric fields the
Maxwell stresses overcome the surface tension, and jetting is initiated from the
droplet tip if the static (initial) contact angle of the droplet with the conducting
electrode is αs < 0.8π; in this case the jet base acquires a quasi-steady, nearly conical
shape with vertical semi-angle β � 30◦, which is significantly smaller than that of the
Taylor cone (βT = 49.3◦). (iii) In supercritical electric fields acting on droplets with
contact angle in the range 0.8π <αs < π there is no jetting and almost the whole
droplet jumps off, similar to the gravity or drop-on-demand dripping. The droplet–jet
transitional region and the jet region proper are studied in detail for the second case,
using the quasi-one-dimensional equations with inertial effects and such additional
features as the dielectric properties of the liquid (leaky dielectrics) taken into account.
The flow in the transitional and jet region is matched to that in the droplet. By
this means, the current–voltage characteristic I = I (U ) and the volumetric flow rate
Q in electrospun viscous jets are predicted, given the potential difference applied.
The predicted dependence I = I (U ) is nonlinear due to the convective mechanism of
charge redistribution superimposed on the conductive (ohmic) one. For U =O(10kV )
and fluid conductivity σ = 10−4 Sm−1, realistic current values I = O(102nA) were
predicted.

1. Introduction
Consider an axisymmetric droplet of an incompressible conducting viscous liquid

on an infinite conducting plate. With gravity effects neglected, the stationary shape
of the droplet is spherical. The droplet shaped as a spherical segment rests on the
plate with a static contact angle of the liquid/air/solid system αs (see figure 1a).
Suppose that at the initial time moment t = 0 an electric potential is applied to the
plate (and the droplet) relative to another plate located far from the first and parallel
to it. Then at distances r from the droplet, much larger than its volume-equivalent
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Figure 1. (a) The initial shape of the droplet at the moment when the electric field is to be
applied. The dashed sphere represents the volume-equivalent droplet of volume V . (b) Sketch
of the boundary curves Γ and Γ̃ . (c) Sketch of the boundary curves Γ̃ and Γ∞ used to eli-
minate any effect of the asymptotic boundary.

radius a0 (V = 4πa3
0/3, V being the droplet volume) a uniform field E∞ is directed

perpendicular to the plate (see figure 1a). The droplet is assumed to be initially at rest.
With the field applied, the droplet evolves under the action of the electric, capillary
and viscous forces. The aim of the present work is to determine the time pattern of
this evolution.

The topicality of the problem is associated with such applications as electrospraying
(Zeleny 1915, 1917; Cloupeau & Prunet-Foch 1989; Michelson 1990; Fernandez de
la Mora 1992; Mestel 1994, 2002; Bailey 1998), pure liquid alloy ion sources (LAIS)
(Forbes & Mair 1982; Prewett, Mair & Thompson 1982; Driesel, Dietzsch & Muhle
1996), and electrospinning of polymer nanofibres (Reneker & Chun 1996; Reneker
et al. 2000; Yarin, Koombhongse & Reneker 2001a; Theron, Zussman & Yarin 2001).
In all these cases an initially almost hemispherical droplet attached to a plate or an
orifice is subjected to a strong capacitor-like electric field. As was shown in the seminal
work of Taylor (1964), a conducting droplet raised above a critical electric potential
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can no longer be sustained intact by surface tension, and jetting initiates from its tip.
At the critical potential, according to Taylor (1964), infinite droplets acquire a conical
shape with semi-angle βT = 49.3◦ (the Taylor cone); Pantano, Ganan-Calvo & Barrero
(1994) were the first to treat this issue for a finite drop attached to a tube. For dielectric
droplets conical shapes with semi-angles β < 49.3◦ were predicted in Li, Halsey &
Lobkovsky (1994). However, liquids could be considered as dielectrics only on time
scales of the order of the charge relaxation time τC . For polymer solutions used in
electrospinning, which are considered in the present work, τC � 10−6 s, which is much
shorter than the characteristic hydrodynamic time τH (cf. § 2). Therefore the results of
Li et al. (1994) are inapplicable in the present situation. The recent experiments with
electrospinning of Yarin, Koombhongse & Reneker (2001b) demonstrated critical
cones with β ≈ 30◦. Moreover, in the latter work it was shown theoretically that the
Taylor cone corresponds to a self-similar solution of the Laplace equation for the
electric potential, and there exist non-self-similar solutions (corresponding to acute,
albeit rounded hyperboloids) which do not tend to the self-similar one. In the critical
state these hyperboloids approach the value of β ≈ 33.5◦. It seems that in the case
of the elliptic Laplace equation self-similar solutions are not always attractive to
the non-self-similar ones, as has already been demonstrated for the solutions of
the biharmonic (with the Laplace operator squared) equation in the well-known
Sternberg–Koiter paradox (Sternberg & Koiter 1958). This situation is completely
different from the one associated with the parabolic boundary layer equations, where
the self-similar solutions for jets (and plumes) originating from a point source (nozzle)
are known to be attractive to the non-self-similar solutions for jets/plumes originating
from finite-size nozzles/sources (Schlichting 1979; Zel’dovich 1992; Dzhaugashtin &
Yarin 1977). Also, the self-similar system of surface-tension-dominated surface waves
on a shallow liquid layer corresponding to a point initial perturbation and described
by the beam equation with squared parabolic operator (Yarin & Weiss 1995) is
definitely attractive for the corresponding non-self-similar waves. Indeed, the fact that
the self-similar waves are realizable experimentally (Yarin & Weiss 1995) shows that
the non-self-similar waves originating from non-point perturbations nevertheless tend
to the self-similar ones in this case.

In the present work non-self-similar solutions for the electric and flow fields as well
as the corresponding droplet shapes are sought. One of the aims is to check whether
the non-self-similar solutions tend to that of Taylor (1964) at the critical steady state,
or to a totally different critical equilibrium, as the approximate method of Yarin et al.
(2001b) suggests. Moreover, since the calculations are done for the general transient
situation, we expect to simulate the initiation of jetting from the droplet tip in the
supercritical fields where the Maxwell stresses overcome the surface tension. In the
past, numerical simulations of transient sub- and supercritical evolution of drops in
electric fields have received much less attention than the static cases (Sherwood 1991;
Notz & Basaran 1999; Suvorov & Litvinov 2000).

Electrospinning, mentioned above as the main motivation of the present work, is a
straightforward, cheap and unique method to produce novel fibres with a diameter in
the range of 100 nm or even less. To achieve this, polymer solutions are electrospun
at a field strength of about 1 kV cm−1. The electric force results in jetting from the
tip of a pendant or sessile droplet. After the jet has flown away from the droplet
in a nearly straight line about 1 to 5 cm long, it bends in a complex path, during
which electrical forces stretch and thin it by very large ratios. After the solvent
evaporates, solid nanofibers are left. Theoretical studies of the key element of the
electrospinning process, the bending instability of electrified jets, have been published
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by Reneker et al. (2000), Yarin et al. (2001a), Shin et al. (2001) and Hohman et al.
(2001a, b). The straight section of the electrospun jets was considered in Reneker
et al. (2000), Hohman et al. (2001a) and Feng (2002). The numerous applications of
electrospun nanofibers and mats include filter media, fiber-reinforced plastics, solar
and light sails and mirrors in space, the application of pesticides to plants, cosmetic
masks, biomedical applications (tissue engineering, scaffolds, bandages, drug release
systems), protective clothing for biological and chemical protection, fibers loaded
with catalysts and chemical indicators, and microaerodynamic decelerators and other
airborne structures. They are of interest in the development of novel polymer-based
light-emitting diodes, diodes, transistors, photonic crystals, flexible photocells, and
for many other micro- and optoelectronic applications. Reviews devoted to the
electrospinning process and its applications have been published by Fong & Reneker
(2000), Yarin (2003), Frenot & Chronakis (2003) and Huang et al. (2003).

The subject of the present work is the droplet evolution and jet formation in elec-
trospinning. The problem is posed in § 2. Non-dimensionalization is carried out in § 3.
The numerical method is presented in § 4. The experimental setup is described in § 5.
Comparison of the simulation results with the experimental data, and a discussion
of them in the light of the numerical models known from the literature are given in
§ 6. Additional detailed numerical results are presented and discussed in § 7. The flow
in a jet-like protrusion issuing from a droplet tip in sufficiently high electric fields is
briefly discussed in § 8. The conclusions are formulated in § 9.

2. Problem formulation
Let us estimate the relevant characteristic dimensionless parameters of the

problem. Take the liquid density ρ ∼ 1 to 10 g cm−3, the viscosity µ ∼ 10 P, the surface
tension γ ∼ 100 g s−2, the characteristic length a0 � 0.1 cm, the characteristic velocity
V0 = γ /µ ∼ 10 cm s−1. Then the Reynolds number is

Re =
ρV0a0

µ
� 0.1 to 1. (1)

The parameter representing the relative importance of the electric and capillary
stresses is the electric Bond number, defined as

BoE =
a0E

2
∞

γ
. (2)

Assume the applied electric field E∞ = 10/3 to 100/3 g1/2 cm−1/2 s−1, which is 1 to
10 kV cm−1. Then BoE = 10−2 to 1. In this case the electric stresses can compete with
the surface tension and change the droplet shape significantly.

Note that in the present work all the equations that contain terms that depend
on the electric field are expressed in Gaussian (CGS) units, and the values of all the
parameters are given in CGS units. This is especially convenient and customary in
cases where both electrostatics and fluid mechanics are involved. The values of the
electric potential, the electric field strength, the electric current and conductivity are
also converted to SI units for convenience.

The above values of Re enable us to consider the problem in the creeping-flow
approximation up to the time when the velocity of the liquid u becomes much larger
than V0. The Stokes equations for the liquid motion within the droplet are

∇p = µ�u, (3)
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∇ · u = 0, (4)

where u = (ur, uz) is the liquid velocity, and p is the pressure. Axial symmetry is
assumed, Oz being the symmetry axis (cf. figure 1a).

The dynamic boundary conditions at the droplet surface are vanishing of the
tangential stresses and balance of the normal stresses, with the effect of surface
tension and electric stresses taken into account:

f · τ = 0, (5)

f · n = γ κ +
E2

8π
. (6)

Here f is the traction acting at a unit area of the liquid surface, n and τ are the
unit normal and tangent vectors at the surface; κ is the surface curvature. Note that
fi =Πiknk, i, k = {r, z} and

Πik = −pδik + µ

(
∂ui

∂xk

+
∂uk

∂xi

)
. (7)

Since the liquid is assumed to be a perfect conductor, only the normal component
of the field E is non-zero at the droplet surface. This assumption means that the
characteristic charge relaxation time τC = ε/(4πσ ) is much less than its hydrodynamic
counterpart τH = µa0/γ (ε and σ being the dimensionless relative permittivity, or
the dielectric constant, and conductivity of the liquid, respectively). The inequality
τC/τH � 1 is equivalent to εγ /(4πσµa0) � 1. The latter obviously holds for liquid
metals, as well as for the ionic conductors which are the main concern of the
present work. In the latter case, we can take ε =40, µ = 20 g cm−1 s−1, γ = 40 g s−2,
σ = 9 × 105 to 9 × 106 s−1, which is 10−4 to 10−3 S m−1, and a0 = 10−1 cm, which yield
τC/τH =0.706 × 10−5 to 0.706 × 10−4.

To find the electric field E at the surface it is necessary to solve the Laplace
equation for the electric potential Φ:

�Φ =
∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

∂2Φ

∂z2
= 0, (8)

E = −∇Φ = −∂Φ

∂r
er − ∂Φ

∂z
ez, (9)

where er and ez are the unit vectors in the radial and axial directions, respectively.
The boundary conditions for (8) are

Φ = 0 at the drop surface ξ (r) and at the plate COB in figure 1(a), (10)

and

−∂Φ

∂z
→ E∞ as |r| → ∞, (11)

where r is the position vector.
Then the electric field at the droplet surface S can be found as

E (x) = −∂Φ

∂n
, x ∈ S, (12)

where x is the position vector of the surface points at time t .
The kinematic boundary condition at the drop surface is

dx
dt

= u(x). (13)
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The solution of (13) is subject to the initial condition

x(0) = x0, (14)

where x0 is the position vector of the point at t = 0 (see figure 1a).
The no-slip boundary condition at the plate is

u = 0, z = 0. (15)

Note that this condition can be violated near the contact line (i.e. at points B and
C in figure 1a). It is well known (Hoffman 1975; Dussan V. 1979; Cox 1986) that
when the apparent contact angle α is not equal to the static contact angle αs , then the
contact line (CL) moves with a velocity depending on the values of the two angles
α and αs . However, this velocity is low relative to the characteristic velocity γ /µ

and can be neglected (Reznik & Yarin 2002a, b, c; Reznik, Zussman & Yarin 2002).
The latter is assumed in the present work, which means that the CL is immobilized
throughout the drop evolution, whereas the angle α is free to change starting from
α = αs at t = 0 (also cf. the experimental evidence in § 5).

3. Dimensionless parameters
Introduce the following dimensionless variables:

x =
x
a0

, t =
t

τH

, u =
u
V0

, p =
a0p

γ
, E =

E
E∞

, Φ =
Φ

E∞a0

, (16)

with the velocity scale V0 = γ /µ, and the time scale τH = µa0/γ .
The dimensionless dynamic boundary conditions (5) and (6) at the free surface of

the droplet take the form

f · τ = 0, (17)

f · n = κ +
BoE

8π

(
∂Φ

∂n

)2

. (18)

Here and hereinafter the bars are dropped for convenience. The dimensionless
boundary condition for the electric field is

−∂Φ

∂z
→ 1, |r| → ∞. (19)

The dimensionless parameters representing the evolution of the droplet surface are
then the electric Bond number BoE and the static contact angle αs .

4. Numerical method
Equation (13) can be solved numerically using the Kutta–Merson method, provided

the values u(x) are known for any given moment of time. These are found from the
Stokes equations (3) and (4) with the boundary conditions (5), (6) and (15). The
latter equations are equivalent to the following set of integral equations (Becker 1992;
Pozrikidis 1992; van de Vorst 1994):

cij(xP )ui(xP ) = 2π

∫
Γ

fi(xQ)Gaxi
ij (xQ, xP )rQ ds

− PV 2π

∫
Γ

ui(xQ)T axi
ij (xQ, xP )rQ ds, (20)
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xQ = (rQ, zQ), xP =(rP , zP ) being located at the boundary of the liquid volume Γ

which incorporates the free surface of the droplet AB and its contact area with the
plate BO in figure 1(b). The kernels Gaxi

ij and T axi
ij are expressed in terms of the

complete elliptic integrals K(m, 1
2
π), E(m, 1

2
π) where

m =
2

√
rP rQ

C
, C =

√
(rP + rQ)2 + (zP − zQ)2. (21)

These expressions are given e.g. in Becker (1992); cij is a matrix with elements
depending on the corner angle of the boundary curve Γ (see figure 1b) at point xP .
The boundary is not necessarily supposed to be a Lyapunov curve (a Lyapunov curve
has a continuously varying normal vector; Pozrikidis 1992). In (20) s is the parameter
calculated along Γ .

To solve (20) we should find the tractions at the free liquid surface f induced by
the surface tension and the electric field on the liquid surface (see (5) and (6)). To find
the electric field it is necessary to solve (8) for the electric potential with the boundary
conditions (10) and (11). Like (3) and (4), this equation is equivalent to the integral
equation

c(xP )Φ(xP ) = 2π

∫
Γ̃

∂Φ

∂n
(xQ)Kaxi

2 (xQ, xP )rQ ds

− PV 2π

∫
Γ̃

Φ(xQ)Kaxi
1 (xQ, xP )rQ ds, (22)

where the kernels Kaxi
1 and Kaxi

2 are

Kaxi
2 (xQ, xP ) = − 1

π2C
K

(
m,

π

2

)
, Kaxi

1 (xQ, xP ) =
∂Kaxi

2 (xQ, xP )

∂nQ

. (23)

Γ̃ is the boundary incorporating the surface of the drop AB, the equipotential segment
BD of the plate, the segments DF (where ∂Φ/∂n = 0) and FG (where ∂Φ/∂n = −E∞),
located sufficiently far from the droplet (cf. figure 1b).

Solving (22) with the boundary conditions (10) and (11), we can find the electric
field E = −∂Φ/∂n at the droplet surface for any surface shape.

Note, that if droplet is stretched strongly enough, or jetting has already begun at
the droplet tip, the liquid surface could, in principle, approach the boundary GF in
figure 1(b). However, any effect of this boundary can be easily eliminated. Introduce

an auxiliary potential Φ̃:

Φ = −E∞z + Φ̃. (24)

According to the boundary conditions (10) and (11)

Φ̃ = E∞ξ (r) at the drop surface ξ (r), (25)

Φ̃ = O

(
1

r2

)
as |r| → ∞ (26)

((26) corresponds to a dipole-like behaviour at infinity).

Potential Φ̃ satisfies the Laplace equation (8). Therefore, if we introduce a mirror

image of the droplet as in figure 1(c), Φ̃ should satisfy the integral equation (22)

with the integrals being evaluated over the boundary Γ̃ + Γ∞ (with Φ̃ at the droplet
surface given by (25)). According to the boundary condition (26), the integrals over

Γ∞ vanish. After the derivative ∂Φ̃/∂n has been found from the integral equation,
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(iii)

(iv) (i)
(v)

(ii)

Figure 2. Experimental setup. (i) Sessile droplet of polymer solution; (ii) disk-like electrode
attached to high voltage; (iii) grounded disk-like counter electrode; (iv) camera; (v) light
source.

the electric field E = E∞nz − ∂Φ̃/∂n at the droplet surface can be calculated for any

surface shape (nz = n · ez). Recourse to the electric potential Φ̃ eliminates any effect
of the outer boundaries GF and FD and was always used in the calculations.

Equations (20) and (22) are solved using the boundary element method (BEM)
described in detail in Becker (1992) and Pozrikidis (1992). For the numerical procedure
we used a code based on Becker’s BEACON, originally developed for two-dimensional
elastostatic problems and modified for the potential and low-Reynolds-number
hydrodynamic problems in the present work. At each time step the problem (8),
(10) and (11) was solved for a known droplet shape. The electric field found was
then substituted in (6) and the set (3)–(6) and (15) was solved. This yielded the
velocity u of the points of the free surface. Then (13) was integrated to yield the
time evolution of the free surface. A systematic increase of the number of quadratic
boundary elements from 20 to 50 at the generatrix of the free surface of the droplet
revealed almost identical droplet configurations for all the stages of evolution with a
maximal cumulative shift in time of about 3.5%. Most of the calculations were done
with 50 boundary elements at the generatrix of the free surface of the droplets.

5. Experimental setup
The experimental apparatus allowed observation of droplet evolution under

conditions close to those implemented for the numerical simulations (figure 2). Sessile
droplets (i) of polymer solutions were located at the centre of a disk-like electrode (ii)
of radius ae = 0.6 cm. The electrode was attached to high voltage of Φ0 = 12 to 18 kV
at the moment t = 0. The initial droplet shapes (before the high voltage was applied)
were fairly close to spherical segments of radii a0 � 0.1 cm (droplet volume was
of the order of 10 µl). At a distance of 5 cm above (ii), a parallel grounded disk-
like counter electrode (iii) of radius ace = 5.5 cm was located. Droplet evolution in
time was imaged with an electronic camera (iv) (MotionScope – Redlake Imaging
Corporation). The camera speed was 2000 f.p.s. and the shutter speed 0.05 ms. The
camera was equipped with a 70–180 mm, f/4.5 zoom lens. The light source (v)
(400 W HMI lamp with Dedolight DEB400D electronic ballast) was placed against
the camera along its line of sight. Polymers used were Poly(ethylene oxide) (PEO)
of molecular weights Mw = 6 × 105 and 106 g mol−1 (Aldrich) and Polycaprolactone
(PCL), of molecular weight of Mw = 8 × 104 g mol−1 (Aldrich). Four different solutions
were tested: (i) 3% wt PEO (Mw = 6 × 105 gmol−1) in ethanol/water (40/60 mixture)
(called solution PEO1). (ii) 3% wt PEO (Mw = 106 g mol−1) in ethanol/water (40/60
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Solution ε σ (Sm−1) γ (g s−2)

PEO1 61.44 1.38 × 10−3 37
PEO2 67.97 1.28 × 10−3 38
PCL1 25.38 0.141 × 10−3 23
PCL2 21.3 0.273 × 10−3 28.9

Table 1. Material properties of the solutions used in the experiments.

mixture) (PEO2), (iii) 10% wt PCL in acetone (PCL1), (iv) 8% wt PCL in Methylene
chloride (MC)/Toluene 75/25 mixture (PCL2). The permittivity, conductivity and
surface tension of the solutions are given in table 1.

At the relatively low rates of deformation characteristic of the flow inside droplets
prior to jetting, which are of the order of 10−1 s−1, the rheological behaviour of
these polymer solutions is close to that of viscous Newtonian fluids and can be
characterized by zero-shear viscosity µ. Measurements of the zero-shear viscosities
revealed values of µ of the order of 10 or 102 P. The results can be considered only as
an order of magnitude estimate due to the inaccuracies usually involved in zero-shear
viscosity measurements (a Couette programmable viscometer Brookfield DV-II+ was
used), and also due to the fact that solvent evaporation during the experiment could
lead to an increase of viscosity. Discussion of the effective values of viscosity for the
experiments will be given in § 6.

Droplets were released at the disk-like electrode from a syringe and acquired steady-
state shapes fairly close to those of spherical segments with the corresponding static
contact angles. Then, at time t = 0 a high voltage was instantaneously applied and
droplet evolution was recorded by the camera. The results for PCL2 are presented
in figure 3. No visible motion of the contact line was recorded. Axial symmetry of
the flow was fairly accurately sustained during the whole droplet evolution. Limited
camera resolution did not allow reliable recording of the very tip of the droplets
prior to jetting (figure 3). Therefore recorded droplet heights are typically slightly
underestimated. However, the jetting onset is clearly seen. The jetting of PEO1
droplet starts at tjet =609.5 ms, of PEO2 at tjet = 1247 ms, of PCL1 at tjet = 535 ms,
and of PCL2 at tjet = 756.5 ms (figure 3).

Experiments on drop evolution in a high-voltage electric field were conducted by
Zhang & Basaran (1996). They used low-viscosity fluid (water), and droplets were
attached to a capillary. The flow behaviour of the droplets was quite distinct from
that of the highly viscous fluids used for electrospinning of nanofibers. Also, the
boundary condition (attachment to a capillary filled by fluid) was different from the
one considered in the present work. Thus it was impossible to use the data of Zhang &
Basaran (1996) for comparison and there was a need to conduct the present set of
experiments.

6. Comparison of the simulations with the experimental data and other
numerical models

Consider a conducting disk of radius ae charged by a charge e. The potential of
the electric field in the whole space is given by (Landau & Lifshitz 1995)

Φ =
e

ae

arctan

{
2a2

e

r2 + z2 − a2
e +

[(
r2 + z2 − a2

e

)2
+ 4a2

e z
2
]1/2

}1/2

. (27)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3. Evolution of a PCL2 droplet. Applied voltage is 13.5 kV, droplet volume is about
10 µl. Times are the following: (a) 0 ms, (b) 101.5ms, (c) 201.5ms, (d) 351.5ms, (e) 501.5ms,
(f ) 601.5ms, (g) 651.5ms, (h) 701.5ms, (i) 731.5ms, (j ) 756.5 ms.
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Figure 4. The tip height normalized by a0 versus time normalized by the jetting time.
(a) PEO1 droplet. (b) PEO2 droplet, (c) PCL1 droplet, (d) PCL2 droplet. The symbols
show the experimental data, the curves the computational predictions.

Therefore

Φo = Φ|z=0 =
πe

2ae

. (28)

The charge density at the centre of the disk surface qe = e/(4πa2
e ), and the normal

field strength En = 4πqe. For a tiny droplet located at the disk centre En is identical to
E∞ of § 2, which allows an estimate of the field strength corresponding to the applied
voltage

E∞ =
2

π

Φo

ae

(29)

(use is made of (28)).
The electric Bond number in (2) for the experiments becomes

BoE =
a0

γ

4Φ2
0

(πae)2
. (30)

Taking γ = 40 g s2, ae = 0.6 cm, a0 = 10−1 cm and Φ0 = 50 g1/2 cm1/2 s−1, which is 15 kV,
we obtain BoE ∼ 7. For such high values of the electric Bond number the effect of the
surface tension is rather small and jetting is inevitable. In fact, for BoE � 1 surface
tension could be neglected in the calculations from the very beginning. This means
that for BoE � 1 the characteristic time is τE =µ/E2

∞ instead of τH .
The results of the numerical calculations are compared to the experimental data

of § 5 in figures 4 and 5. The droplet boundaries were estimated through image
processing using Adobe Photoshop and Matlab. The image calibration was done
using a wire of known width photographed at the same record rate and shutter speed
as the droplet. In figure 4(a–d) the tip height is plotted as a function of time for PEO1,



360 S. N. Reznik, A. L. Yarin, A. Theron and E. Zussman

PEO2, PCL1 and PCL2, respectively. In the figures dimensionless time t1 = t/(µ/E2
∞)

is scaled by the dimensionless jetting time t1,jet = tjet/(µ/E2
∞), which is equal to 9.2,

11, 7.83 and 8.14 for PEO1, PEO2, PCL1 and PCL2, respectively (all the values are
computational). The effective viscosity could be estimated from the equality of the
dimensional jetting time in the calculations and in the experiments. Therefore for
PEO1 9.2µ/E2

∞ =0.6095 s, for PEO2 11µ/E2
∞ = 1.247 s, for PCL1 7.83µ/E2

∞ = 0.535 s,
and for PCL2 8.14µ/E2

∞ = 0.7565 s. In all cases E∞ is calculated from (29), which
yields E∞ = 58.35, 63.66, 42.44 and 47.75 g1/2 cm−1/2 s−1 for PEO1, PEO2, PCL1 and
PCL2, respectively. Therefore the estimate yields µ = 225, 459, 123 and 212P for
PEO1, PEO2, PCL1 and PCL2, respectively. These values are plausible in the light of
the estimates of zero-shear viscosity following from the measurements mentioned in
§ 5. The higher value of µ found for PEO2 compared to that for PEO1 is consistent
with the fact that the molecular weight of PEO2 is higher than that of PEO1 (polymer
concentrations and solvents are the same in both cases).

As was mentioned in § 5, the experimental values of the tip height hA are typically
underestimated. That might be the reason for a significant difference between the
predicted and measured values seen in figure 4(c). In figures 4(a), 4(b) and 4(d) the
agreement between the predictions and measurements is fairly satisfactory.

In figure 5 the predicted and measured shapes of the PCL2 droplet are shown at
different time moments. The results correspond to those of figure 4(d). In this case
the theory slightly underestimates the stretching rate, but the overall agreement is
fairly good. The shift could be attributed to the neglect of inertia in the calculations.
However, that is not the case: the values of the tip velocity uz measured in the
experiments are: for curve (i) in figure 5 0 cm s−1, (ii) 0.058 cm s−1, (iii) 0.110 cm s−1,
(iv) 0.142 cm s−1, (v) 0.167 cm s−1, (vi) 0.221 cm s−1, (vii) 0.353 cm s−1, (viii) 0.485 cm s−1,
(ix) 0.638 cm s−1, (x) 0.941 cm s−1; the corresponding values in the calculations are
quite similar. The viscosity of PCL2 µ = 212 P, the density ρ � 1.32 g cm−3, and
the droplet size a0 � 0.1 cm. Therefore the highest value of the Reynolds number
corresponding to figure 8 is Re = 5.86 × 10−4, which hardly gives any inertial
effects.

Note also, that the assumed initial shape of the droplet as a spherical segment
(which is similar to Harris & Basaran 1993) slightly differs from the actual droplet
shape near the contact line, presumably due to squeezing by the gravity force. This
discrepancy should not have any significant effect on droplet evolution, since the
Maxwell stresses pulling the droplet are almost fully determined by the tip shape,
which is reproduced rather accurately.

Several recent numerical works are devoted to close, but different cases. For example,
Wohlhuter & Basaran (1992) using finite-element analysis calculated steady-state
shapes of pendant/sessile droplets in an electric field. Their droplets, however, were
considered as polarizable dielectrics (non-conductors) with no free charges embedded
at the free surface. In the situation considered in the present work the fluid behaviour
corresponds to that of ionic conductors (cf. § 2). Therefore neither the electric context
in the present work, nor the dynamic and static droplet shapes can be related to those
predicted in Wohlhuter & Basaran (1992).

Harris & Basaran (1993) calculated static shapes of conducting drops hanging
from a protruding nozzle or one submerged in the wall, filled by fluid. The nozzle
was attached to an electrode of a parallel-plate capacitor – an electrical field slightly
different from the one considered in the present work. The boundary conditions
are also different from those for the sessile droplets at a solid wall considered
in the present case; however, their prediction of the critical semi-angle β < 40◦,
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Figure 5. Measured and predicted shapes of the PCL2 droplet at different time moments:
i t = 0, ii 101.5, iii 201.5, iv 351.5, v 501.5, vi 601.5, vii 651.5, viii 701.5, ix 731.5, x 756.5.
Time is given in ms. The calculation results are shown by solid lines for the right-hand side
of the droplet only. Their numerals are located at their tip points (corresponding to r = 0).
The experimental shapes are plotted as dotted lines. On the left-hand side the values of r are
artificially made negative.

which is significantly smaller than βT = 49.3◦, is quite remarkable. An additional
comparison of that work with the static results of the present one is given below
in § 7.

Notz & Basaran (1999) carried out a numerical analysis of drop formation from
a tube in an electric field. Again, the boundary condition is quite different from the
present case. Moreover, the flow in the drops was treated as an inviscid potential
flow. In a subcritical electric field when no jetting is initiated such a model predicts
undamped oscillations of the droplet. Obviously, such a behaviour, as well as that in
jetting, is incompatible with the creeping flow case of the present work corresponding
to the estimates of § 2.

Electrostatically levitated droplets could also develop pointed ends and jetting at
the poles. Calculations for inviscid or slightly viscous fluids have demonstrated a
tendency to protrusion development at the droplet poles in strong electric fields
(Haywood, Renksizbulut & Raithby 1991; Basaran et al. 1995; Feng & Leal 1996).
Experiments, also corresponding to the low-viscosity limit, have revealed thin jets
issuing from droplet poles and totally disintegrating during 5 µs (Duft et al. 2003).
None of these cases is comparable to the present one dominated by the high viscosity
characteristic of spinnable polymer solutions.



362 S. N. Reznik, A. L. Yarin, A. Theron and E. Zussman

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0

z

(a)

(ii)
(i)

2.0

1.5

1.0

0.5

0 0.5 1.0
r

1.5 2.0

(b)

(iii)
(ii)

(i)

1.95

1.90

1.85

1.80

1.75

1.70
0 0.05

r
0.10

z

(c)

(iv)

(iii)

(ii)

(i)

Figure 6. Droplet evolution corresponding to the contact angle αs = π/3; (a) BoE = 5.06: the
subcritical case, curve (i) shows the initial droplet shape at t = 0, (ii) the saturated shape at
t = 16; (b) BoE =5.29: the initial stage of the supercritical case, (i) t = 0, (ii) t = 13.7, (iii)
t = 21.4; (c) the jetting stage emerging in the supercritical case, (i) t = 21.4, (ii) 21.417, (iii)
21.426, (iv) 21.433.

7. Additional numerical results and discussion
The time evolution of the droplet surface, found numerically for αs = π/3, π/2, 2π/3

and 0.8π at different values of BoE is illustrated in figures 6 to 9. The corresponding
time dependence of the tip height of the drop hA(t) is shown in figure 10. It is seen
that the initially spherical droplet deforms under the action of the electric stresses
and the tip moves upward. This is because the electric charge density near the tip is
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Figure 7. Droplet evolution corresponding to the contact angle αs = π/2; (a) BoE =3.03:
the subcritical case, curve (i) shows the initial droplet shape at t = 0, the subsequent curves
correspond to the time intervals �t = 1; (b) BoE =3.24: the initial stage of the supercritical
case, (i) t = 0, (ii) t = 3, (iii) t = 6, (iv) t = 9, (v) t = 11, (vi) t = 12; (c) the jetting stage emerging
in the supercritical case, (i) t = 12.001, (ii) 12.012, (iii) 12.022, (iv) 12.03, (v) 12.037, (vi) 12.041.
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Figure 8. Droplet evolution corresponding to the contact angle αs =2π/3; (a) BoE = 1.82:
the subcritical case, curve (i) shows the initial droplet shape at t = 0, the subsequent curves
correspond to the time intervals �t = 1 until the droplet shape virtually saturates; (b) BoE =
1.96: the initial stage of the supercritical case, the bottom shape corresponds to t = 0, the
subsequent curves correspond to the time intervals �t =1; (c) the jetting stage emerging in
the supercritical case, (i) t = 14.701, (ii) 14.741, (iii) 14.782, (iv) 14.803, (v) 14.818.
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Figure 9. Droplet evolution corresponding to the contact angle αs = 0.8π; (a) BoE =1.21:
the subcritical case, curve (i) shows the initial droplet shape at t = 0, the subsequent curves
correspond to the time intervals �t = 1 until the droplet shape virtually saturates; (b) BoE =
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Figure 11. The radial (curve i) and vertical (curve ii) velocity components at the droplet
surface versus r for αs = π/3 and BoE = 5.29 at t =0. Note that in the creeping flow
approximation flow arises immediately at t = 0.

higher than elsewhere (Yarin et al. 2001b) and, as a result, the electric stresses also
concentrate there. Thus, the resultant pressure (the sum of the electric and capillary
ones) near the tip is less that far from the tip where the electric charge density is small.
Subject to the corresponding pressure gradient the liquid moves upward, towards the
tip. The vertical velocity component at the surface is maximal at the tip and decreases
as the distance from it increases (figure 11).
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The results presented in figures 6 to 10 show that as the droplet surface becomes
more tapered near the tip, the surface tension becomes more able to compete with
the electric force if the value of BoE is not very large. As a result, the tip velocity
dhA/dt decreases during the intermediate time interval (cf. figure 10). The subsequent
evolution of the droplet depends on the value of the parameter BoE . For sufficiently
small (subcritical) values, the tip velocity decreases monotonically with time and tends
to zero as t → ∞ (cf. curves i and ii in figure 10a–d). On the other hand, jetting sets
in at the tip for sufficiently large values of BoE (cf. curves iii and iv in figure 10a–d).

The subcritical range of BoE depends on the value of the static contact angle
αs: for αs = π/3 we found 5.14< BoE,cr < 5.15; for αs = π/2, 3.03<BoE,cr < 3.04;
for αs = 2π/3, 1.83 <BoE,cr < 1.84; and for αs = 0.8π, 1.21 <BoE,cr < 1.22. For
BoE <BoE,cr stationary droplet configurations emerge, in which the absolute values
of the curvature of the free surface are maximal at the tip and decrease as the
distance from it increases. The static surface is convex everywhere for sufficiently
large αs (see figure 8a), but it can also be concave far from the tip for small αs (cf.
figure 6a).

Some of the static results can be compared with the predictions for a drop hanging
from a nozzle submerged in one of the electrodes of a parallel-plate capacitor in
Harris & Basaran (1993). The effective dimensionless potential P used in that work
is related to the present electric Bond number as P = [21/3BoE/(8π)]1/2H , where H

is the dimensionless distance between the capacitor electrodes, and a0 in (2) is taken
as the volume-equivalent drop radius. In the case of αs = π/2 (equivalent to D = 0 in
Harris & Basaran 1993) our BoE,cr = 3.03 to 3.04. Therefore our prediction for Pcr

in the case H = 10 is Pcr = 3.9. The same value can be found in figure 3 in Harris &
Basaran (1993). The corresponding critical aspect ratio for the drop predicted in the
latter work is about 1.36, while the one calculated here is 1.353. The maximum surface
charge density is 0.56 (figure 21 in Harris & Basaran 1993) and 0.52 in our case.

The duration tE of the evolution to the steady state increases with BoE (see curves i
and ii in figure 10a–d). For example, tE � 8 for BoE = 1.44, and tE � 20 for BoE = 1.82
(for αs =2π/3; cf. figure 10c).

At moderate supercritical values of the Bond number another scenario is realized.
The tip velocity reaches a minimum at some intermediate moment of time and then
begins to increase once more (curves iii and iv in figure 10a–d). For sufficiently large
Bond numbers the tip velocity increases monotonically with time. The corresponding
shapes of the free surface are shown in figures 6(b, c) to 9(b, c). It is seen that after
long times the shape near the tip tends to a cone with a thin jet issuing from it.
The time of the evolution from the initial equilibrium state to the moment of jet
emergence decreases steeply as the supercritical value of BoE increases for a fixed αs ,
while the shape of the surface at that moment remains practically unchanged over a
wide range of variation of BoE . As is seen in figure 12, the height of the droplet tip
increases as BoE increases from 5.29 to 25. However, the increase is relatively small
and the vertical semi-angle remains about β � 30◦.

The fact that the droplet shape at the moment of jet emergence hardly depends on
the value of BoE can be explained as follows. For a sufficiently large BoE capillarity
can be neglected compared to the Maxwell stresses, and (18) reduces to

f · n =
BoE

8π

(
∂Φ

∂n

)2

. (31)

Then from the dimensionless form of the boundary integral equation (20) one can
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Figure 12. The droplet shape at the moment of jet emergence in the case αs = π/3.
Curve (i) corresponds to BoE = 5.29, (ii) BoE = 9, (iii) BoE = 16, (iv) BoE = 25.

find the surface velocity to be

u(x) = BoE ũ(x), (32)

where the function ũ(x) does not depend on BoE .
Therefore the dimensionless equation of shape evolution becomes

dx
dt

= BoE ũ(x) (33)

(cf. (13)), or

dx
dt1

= ũ(x) (34)

with t1 = BoEt (which means that the characteristic time scale is now τE = µ/E2
∞

instead of τH , as has already been mentioned in § 6 for the case of BoE � 1).
Equation (34) does not contain BoE . Therefore the droplet shape does not depend
on BoE when the latter is sufficiently large.

The droplet shapes at the moment of jet emergence can vary widely (see fig-
ures 6b–9b) for the different values of αs . For αs = 0.8π the shape is vertically
elongated and most of the mass accumulates in the leading tip, attached to the plate
by a thread (see figure 9b). The electric stresses in the tip then far exceed the capillary
pressure, but in the thread they are of the same order. Thus the resultant pressure in
the thread is much higher than in the tip, which results in strong flow from the thread
neck to the tip and the thread is pinched off. Under this scenario a jet is initiated
from the moving conical tip later on (cf. figure 9c).

For moderate values of αs when the thread does not form, the absolute value of
the velocity decreases very steeply with the distance from the base of the jet. On the
characteristic time scale of the jet evolution, the shape of the liquid surface far from
the jet remains practically unchanged. The subsequent evolution of the jet cannot be
described within the framework of the inertialess approximation because the velocity
near the tip becomes too high (cf. § 8).
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It is emphasized that the average semi-angle β of the cone below the jet base in
figures 6(c)–9(c) is approximately 25◦–30◦. We have not been able to find an approach
to the Taylor cone from the subcritical regimes in the present dynamical numerical
simulations. The fact that the early supercritical regimes exhibit jets protruding from
the cones with β =25◦–30◦ favours the assumption that the critical drop configurations
(which are very difficult to achieve numerically) are close to those predicted by Yarin
et al. (2001b) with semi-vertical angle of 33.5◦ than to βT = 49.3◦. The assumption,
however, should be treated with caution, since all the examples in figures 6(c)–
9(c) correspond to slightly supercritical dynamical cases, where semi-angles β can
be smaller because of the presence of the protrusion. It should be added that
Taylor (1964) and Yarin et al. (2001b) considered infinite liquid bodies: a cone or
a hyperboloid of revolution, respectively. Comparison of these two idealized models
with the experimental or less idealized numerical situations, where droplets are finite
and attached to a nozzle or a plane wall, should be made with caution. The base
parts of the droplets are mechanically affected by the nozzle wall, which restricts the
diameter of the droplet (Yarin et al. 2001b). Such a restriction is, however, much
less important for a droplet attached to a plane wall, as in the present case. On the
other hand, near the droplet tip any effect of mechanical restrictions and the electric
stresses resulting from charge distribution in the areas far from the tip, should be
small. That is the reason why both Taylor cones and hyperboloids could be compared
with experiments and numerical calculations for finite droplets.

As was mentioned above, the threshold value of the electric Bond number BoE,cr

decreases as the static contact angle αs increases (figure 13; a similar conclusion could
be drawn from figure 31 in Harris & Basaran 1993). This can be explained by the
fact that for large contact angles the non-uniformity of the electric field along the
surface at t =0 is more significant than in the case of small contact angles, where
the droplet is initially rather squat and the electric field is more uniform along the
surface. Therefore, in the former case surface pulling by the electric force is relatively
stronger and jetting sets in at lower values of BoE .

In the case of initial contact angles close to π and sufficiently large values of
BoE , a third (dripping) scenario of droplet evolution is realized (figure 14). The
droplet is slowly stretched in the vertical direction under the action of the electric
forces, while most of its mass is concentrated in the leading tip (similarly to the
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Figure 14. Dripping development at the static contact angle αs = 0.82π at
BoE =2.25 > BoE,cr = 1.13. (i) t = 0, (ii) 1.6, (iii) 2, (iv) 2.1, (v) 2.15, (vi) 2.17, (vii) 2.18.

case shown in figure 9b). The tip is attached to the electrode plate underneath by
a relatively thin thread. The droplet configurations resemble those associated with
gravity-driven dripping (Schulkes 1994) or with drop-on-demand printers (Percin,
Lundgren & Khuri-Yakub 1998). Later, the thread is pinched off and the droplet
detaches from the electrode, without either a static cone forming or jetting setting in
(unlike the case shown in figure 9b, c).

A critical value of the static contact angle αs∗ corresponds to the borderline between
the second (jetting at BoE > BoE,cr ) and the third (dripping at BoE >BoE,cr ) scenarios.
The calculations showed that 0.8π <αs∗ < 0.82π. The tip height with supercritical value
αs ∼ 0.82π is shown in figure 15 versus time for several values of BoE . In this case
the critical value of the electric Bond number corresponding to the onset of dripping
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Figure 15. The tip height versus time for αs = 0.82π. Curve (i) corresponds to BoE = 0.9,
(ii) BoE = 1.12, (iii) BoE = 1.13 (cases i and ii subcritical, case iii supercritical dripping).

is 1.12 <BoE,cr < 1.13. For BoE � 1.12 stable static droplet shapes exist, whereas for
BoE > 1.13 dripping sets in.

8. Straight section of the jet in the supercritical regime
In supercritical regimes electric forces overcome the surface tension, and a static

droplet shape cannot be achieved. Then for αs <αs∗ jetting originates at the tip. The
initial section of the jet (if it is not ruptured due to capillary instability), of the order
of several cm, is straight. Further on, when the jet becomes sufficiently thin and its
bending stiffness decreases, electrically driven bending instability sets in (Reneker
et al. 2000). In this section we consider briefly the straight section of the jet.

As mentioned in § 7, the velocity in the jet becomes sufficiently large that the
inertialess approximation becomes invalid. Moreover, fast flow reduces significantly
the hydrodynamic characteristic time τH , which is associated now with the residence
time of fluid particles in the jet. The length of the straight part of the jet is of the
order of l ∼ 1 cm and the characteristic velocity there is V∗ = 102 cm s−1 (Reneker et al.
2000). Therefore τH = l/V∗ = 10−2 s and the ratio τC/τH = εV∗/(4πσ l) = 0.035 × 10−3

to 0.035 × 10−2. The ratio τC/τH increases even more, since the velocity increases. At
high enough values of the ratio τC/τH the liquid in the jet can no longer be considered
as a perfect conductor (as in § 2), but rather as a leaky dielectric (Melcher & Taylor
1969; Saville 1997).

In § 7 it was noted that the cone angle in the transient region, where the viscous
inertialess flow transforms into a jet, is β � 30◦. Then, for a description of the flow in
the transient region and the jet it is natural to use the quasi-one-dimensional equations,
which has been done in a number of works (Melcher & Warren 1971; Kirichenko
et al. 1986; Li et al. 1994; Ganan-Calvo 1997a, b, 1999; Cherney 1999a, b; Stone,
Lister & Brenner 1999; Hohman et al. 2001a; Feng 2002) with different degree of
elaboration. The solution of these equations should also be matched to the flow in the
drop region. Cherney (1999a, b) used the method of matched asymptotic expansions
to match the jet flow with a conical semi-infinite meniscus. As a basic approximation
for the droplet shape the Taylor cone of βT = 49.3◦ was chosen. This choice seems
to be rather questionable in the light of the finding that the Taylor cone represents
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a self-similar solution of the Laplace equation to which non-self-similar solutions do
not necessarily tend even in the case of a semi-infinite meniscus (Yarin et al. 2001b).
Moreover, even in the situation considered, complete asymptotic matching has never
been achieved. Figures 2(b), 3 and 4 in Cherney (1999a) depict discontinuities in
the transition region from the meniscus to the jet. Namely, the solutions for the
velocity, the potential and the field strength, and the free-surface configuration are all
discontinuous. A similar discontinuity in the distribution of the free-surface charge
density is depicted in figure 2 in Cherney (1999b). In that work it is mentioned that
“rigorous studies of the whole transition region require significant effort and must be
a subject of separate work”. The rigorous asymptotic matching is not yet available
in the literature, to the best of our knowledge. Approximate approaches were tested
to tackle the difficulty. In particular, Ganan-Calvo (1997a, b, 1999), Hohman et al.
(2001a) and Feng (2002) extended the quasi-one-dimensional jet equations through
the whole droplet up to its attachment to the nozzle. Such an approach is quite
reasonable, but only as a first approximation, since the equations are formally invalid
in the droplet region, where the flow is fully two-dimensional. Also, in the electric
part of the problem there is a need to take into account the image effects at the
solid wall, which is not always done. When done, however (e.g. in Hohman et al.
2001a), it does not necessarily improve the accuracy of the results. Fortunately, Feng
(2002) showed that all the electrical prehistory effects are important only in a very
thin boundary layer, adjacent to the cross-section where the initial conditions are
imposed (in his case at the nozzle exit). As a result, there is a temptation to apply the
quasi-one-dimensional jet equations similar to those of Feng (2002) but moving the
jet origin to a cross-section z∗ > 0 in the droplet (the value of z∗ is of the order of
the apparent height of the droplet tip).

Our main aim now is matching the flow in the jet region with that in the droplet
considered in § § 2–7. The latter is essentially non-stationary when the jet emerges from
the droplet tip, and the acceleration of the particles at the liquid surface increases. This
is in response to the action of the increasing-with-curvature normal electric stresses at
the droplet surface (note that surface tension essentially does not play any significant
role near the droplet tip in this situation). The inertialess theory of § 2, however,
overestimates the significance of the fluid acceleration and the transient effects in
the region near the droplet tip. It is logical to assume that in the straight section
of the jet of the order of several cm (before the bending instability characteristic of
electrospinning sets in; Reneker et al. 2000) the inertial forces result in a quasi-steady-
state flow. On the other hand, the droplet shape close to the jet base continues to
be the same as at the moment of jet emergence. The latter assumption is supported
by the experimental data (Reneker et al. 2000; Yarin et al. 2001b). The shape of
a steady-state jet is determined by the flow rate from the droplet to the jet Q, the
applied electric field strength far from the droplet E∞ (or the corresponding capacitor
electric potential difference U ), and the liquid properties. Our aim now is to find the
quasi-steady-state shape of the jet, as well as its current–voltage characteristic.

At the point where the jet detaches from the droplet z∗ the boundary conditions
corresponding to matching to the numerically obtained solution found in the droplet
were imposed. Namely, the cross-section radius, the slope of the free surface and the
surface charge density were matched.

The values of the parameters in the calculations were taken as: µ = 200 P,
γ ∼ 40 g s−2, ρ = 1 g cm−3, σ = 9 × 105 s−1 and δ = ε/εa − 1 =39, with ε and εa being
the permittivities of the fluid and air, and σ being the fluid conductivity (the leaky
dielectric model).
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Figure 16. The electric current versus the applied voltage for the case αs = π/3. The gap
between the capacitor plates is taken as 1 cm.
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Figure 17. The convective and conductive parts of the electric current versus the coordinate
z for the case αs = π/3. Curves (i) and (i)′ correspond to BoE = 5.29, (ii) and (ii)′ BoE = 9, (iii)
and (iii)′ BoE = 16, (iv) and (iv)′ BoE = 25. Curves without the prime represent the convective
part, those with the prime the conductive one.

In the calculations the flow rate from the droplet to the jet Q and the electric
current in the jet were found as functions of the applied electric potential difference
U . The calculated dependence of the electric current I on the voltage U is shown in
figure 16. It is seen that the current increases nonlinearly with the field strength. This
results from the fact that over most of the jet length the electric charge is transported
convectively and thus differs from the pure ohmic current. The dependence of the
dimensionless convective part of the current IC = 2qaV/π and of the conductive ohmic
one IOh =Elza

2 on z is shown in figure 17 for several values of the electric Bond
number BoE . (The free charge density at the jet surface is denoted by q , the jet cross-
section radius by a, the longitudinal velocity by V , and the axial component of the
field strength in the liquid by Elz. They are rendered dimensionless by εaE∗/(4π), a∗,
V∗ = Q/πa2

∗ and E∗ = I/(σπa2
∗), with a∗ = (εaQ/4πσ )1/3 � a0 being the characteristic

charge relaxation distance introduced in Fernandez de la Mora & Loscertales (1994).)
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It is clearly seen that for all the values of BoE the transition from predominantly
ohmic to the predominantly convective current takes place at the very beginning of
the jet at 0< (z − z∗)/a∗ < 50, i.e. at the distance of about 50a∗. This transition from
predominantly ohmic current in the droplet region to the convective current in the jet
is similar to the findings of Ganan-Calvo (1997b) in the context of electrospraying.
Note that in the previous models of electrically driven straight jets neither the electric
current I nor the volumetric flow rate Q were calculated (Hohman et al. 2001a; Feng
2002). Instead, these parameters were taken as given which is hard to justify from the
physical situation.

It is emphasized that the predicted current–voltage characteristic I (U, t) and the
flow rate Q(U, t) are a consequence of the unsteady dynamics of the parent droplet
(droplet evolution at the stage when a fully developed jet has been formed is, however,
very slow and the time dependence very weak). Thus, both Q and I are the ‘dynamic’
eigenvalues of the problem for the given initial and boundary conditions, droplet
volume and imposed potential difference U . That is the reason why the solution
found differs from those published in Ganan-Calvo (1997b), where jets issuing from an
equilibrium Taylor cone of inviscid fluid were considered in the context of steady-state
electrospraying. In that case the issuing flow rate Q compatible with the externally
imposed potential U is given and the only eigenvalue is the current I . Ganan-Calvo
(1999) showed that I depends on the surface tension γ and the flow rate Q as
I ∼ (σQγ )1/2 and is independent of the applied voltage. Note also that in the present
situation, in contrast to electrospraying, the viscous forces are much more important
than the surface tension in the region of jet emergence.

9. Summary and conclusions
Three different scenarios of droplet shape evolution in strong electric fields are

distinguished, based on the numerical solution of the Stokes equations (by means
of the BEM) in perfectly conducting droplets. (i) In sufficiently weak (subcritical)
electric fields the droplets are stretched by the electric Maxwell stresses and acquire
steady-state shapes where equilibrium is achieved by means of the surface tension.
The subcritical range of the electric Bond number given by equation (2) depends on
the value of the static contact angle between the droplet and the electrode plate αs:
for αs = π/3 we found that 5.14 <BoE,cr < 5.15, for αs = π/2, 3.03 < BoE,cr < 3.04, for
αs = 2π/3, 1.83 <BoE,cr < 1.84, and for αs = 0.8π, 1.21 < BoE,cr < 1.22. The duration
tE of the evolution to the steady state increases with the electric Bond number BoE .
For example, for αs = 2π/3 we found that tE � 8 for BoE = 1.44 and tE � 20 for
BoE = 1.82.

(ii) In stronger (supercritical) electric fields with BoE > BoE,cr the Maxwell stresses
overcome the surface tension, and jetting sets in from the droplet tip if its static
contact angle with the conducting electrode αs < 0.8π. In this case the droplet shape
(the jet base) acquires a quasi-steady, almost conical shape with the semi-vertical
angle β � 30◦, which is significantly smaller than that of the Taylor cone (βT = 49.3◦).
The droplet shape at the moment of jet emergence is almost independent of the value
of BoE . The predicted rise of the droplet tip and its overall shape during jetting
development agree reasonably with the experimental data of the present work.

The droplet–jet transitional area and the jet region are studied in detail in the
framework of the quasi-one-dimensional equations proposed in the literature. In
this case the inertial effects and such additional features as the dielectric properties
of the liquid (leaky dielectric) are accounted for. The flow in the transitional and
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jet regions is matched to that in the droplet. Unlike previous works neither the
volumetric flow rate Q nor the electric current in the jet I are assumed. Rather, both
Q and I are predicted for a given potential difference U . As a result, the current–
voltage characteristic I = I (U ) is also predicted. It appears to be nonlinear due to the
convective mechanism of charge redistribution superimposed on the conductive, ohmic
one. For electric potential differences of the order of 10 kV and fluid conductivity
σ = 10−4 Sm−1, realistic current values of the order of 100 nA were predicted.

(iii) The onset of the third scenario corresponds to the critical value of the static
contact angle αs∗, found to be close to 0.8π in the supercritical electric fields, namely
0.8π <αs∗ < 0.82π. For αs >αs∗ the supercritical electric fields result in detachment
of an almost whole droplet similarly to the gravity or drop-on-demand dripping.
In particular, for αs = 0.82π >αs∗, the critical value of the electric Bond number
corresponding to the onset of dripping is 1.12 <BoE,cr < 1.13. A steady-state shape
is reached for BoE <BoE,cr , while for BoE > BoE,cr dripping sets in. In this scenario,
jetting characteristic of scenario (ii) does not occur.
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